Sébastien Boucksom

Langue :anglais
Sexe :masculin
Note :
En poste : Institut de Mathématiques de Jussieu, CNRS-Université Pierre et Marie Curie, Paris, France (en 2013)
ISNI :ISNI 0000 0003 5718 0092

Ses activités

Auteur du texte2 documents

  • An introduction to the Kähler-Ricci flow

    Description matérielle : 1 vol. (VIII-333 p.)
    Description : Note : Notes bibliogr.
    Édition : Cham : Springer , cop. 2013
    Autre auteur du texte : Philippe Eyssidieux, Vincent Guedj

    [catalogue][https://catalogue.bnf.fr/ark:/12148/cb43714182q]
  • An Introduction to the Kähler-Ricci Flow

    Description matérielle : 1 online resource
    Description : Note : Titre provenant de la page de titre du document numérisé
    Numérisation de l'édition de Cham ; Heidelberg ; New York [etc.] : Springer, cop. 2013
    Abstract : This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries
    Édition : Cham : Springer International Publishing : Springer e-books : Imprint: Springer , 2013
    Autre : Philippe Eyssidieux, Vincent Guedj

    [catalogue][https://catalogue.bnf.fr/ark:/12148/cb44674467v]

Pages dans data.bnf.fr

Auteurs reliés

Cette page dans l'atelier

Sources et références

Voir dans le catalogue général de la BnF

Sources de la notice

Pages équivalentes